Nonparametric volatility density estimation for discrete time models

نویسندگان

  • Bert van Es
  • Peter Spreij
  • Harry van Zanten
چکیده

We consider discrete time models for asset prices with a stationary volatility process. We aim at estimating the multivariate density of this process at a set of consecutive time instants. A Fourier type deconvolution kernel density estimator based on the logarithm of the squared process is proposed to estimate the volatility density. Expansions of the bias and bounds on the variance are derived.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonparametric Estimation in a Stochastic Volatility Model

In this paper we derive nonparametric stochastic volatility models in discrete time. These models generalize parametric autoregressive random variance models, which have been applied quite successfully to financial time series. For the proposed models we investigate nonparametric kernel smoothers. It is seen that so-called nonparametric deconvolution estimators could be applied in this situatio...

متن کامل

Nonparametric estimation for a stochastic volatility model

In this paper we derive nonparametric stochastic volatility models in discrete time. These models generalize parametric autoregressive random variance models, which have been applied quite successfully to nancial time series. For the proposed models we investigate nonparametric kernel smoothers. It is seen that so-called nonparametric deconvolution estimators could be applied in this situation ...

متن کامل

Nonparametric Specification Testing for Continuous-Time Models with Applications to Term Structure of Interest Rates

We develop a nonparametric specification test for continuous-time models using the transition density. Using a data transform and correcting for the boundary bias of kernel estimators, our test is robust to serial dependence in data and provides excellent finite sample performance. Besides univariate diffusion models, our test is applicable to a wide variety of continuous-time and discrete-time...

متن کامل

Multivariate Nonparametric Volatility Density Estimation

We consider a continuous-time stochastic volatility model. The model contains a stationary volatility process, the multivariate density of the finite dimensional distributions of which we aim to estimate. We assume that we observe the process at discrete instants in time. The sampling times will be equidistant with vanishing distance. A multivariate Fourier-type deconvolution kernel density est...

متن کامل

Nonparametric Estimation of Scalar Diffusions Based on Low Frequency Data1 by Emmanuel Gobet,

We study the problem of estimating the coefficients of a diffusion (Xt , t ≥ 0); the estimation is based on discrete data Xn ,n = 0,1, . . . ,N . The sampling frequency −1 is constant, and asymptotics are taken as the number N of observations tends to infinity. We prove that the problem of estimating both the diffusion coefficient (the volatility) and the drift in a nonparametric setting is ill...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005